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Abstract

In the present paper the well-known vibration equation for very large membrane with the help of powerful modification

of Adomian decomposition method proposed by Wazwaz [A reliable modification of Adomian decomposition method,

Applied Mathematics and Computation 102 (1999) 77–86] has been solved. By using initial value, the explicit solutions of the

equation for different cases have been derived, which accelerate the rapid convergence of the series solution. The present

method performs extremely well in terms of efficiency and simplicity. Numerical results for different particular cases of the

problem are presented graphically.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The decomposition method of Adomian has been applied to solve a wide class of non-linear differential and
partial differential equations [1–4]. The advantage of the decomposition method over the other approximation
methods, apart from computational simplicity, is that the method is non-perturbative and does not involve
any linearization or smallness assumptions. Hence the solution obtained by this method is expected to be a
better approximation.

Wazwaz [5] made further progress of this method with some modifications in the approach. The
modification of the Adomian decomposition method will accelerate the rapid convergence of the series
solution. This modified technique has been shown to be computationally efficient in doing several problems in
applied fields [6–11].

In this paper, the modified decomposition method (MDM) is used to obtain the numerical solutions
of the vibration equation for very large membrane for different particular cases. The expressions of the
displacement for different time and radii of the membrane and also for various wave velocities of free
vibration using the initial conditions are deduced and numerical computations are made with the help of
Mathematica (Version 5.2) and presented through graphs.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The elegance of the process can be attributed to its simplistic approach in seeking the solution to the
problem as opposed to the complexities involved in using classical techniques like Hankel transform and
its inverse.

2. Solution of the problem

The vibration equation of very large membrane is governed by the equation

q2u
qr2
þ

1

r

qu

qr
¼

1

c2
q2u

qt2
; rX0; tX0 (1)

with the initial conditions

uðr; 0Þ ¼ f ðrÞ (2)

q
qt

uðr; 0Þ ¼ cgðrÞ (3)

where u(r, t) represents the displacement of finding a particle at the point r in the time instant t, c is the wave
velocity of free vibration. We consider Eq. (1) as

Lttuðr; tÞ ¼ c2 Lrruðr; tÞ þ
1

r
Lruðr; tÞ

� �
(4)

where Ltt � q2=qt2, Lrr � q2=qr2 and Lr � q=qr symbolize the linear differential operations.
Applying the two-fold integration inverse operator L�1tt ¼

R t

0

R t

0
ð�Þ dtdt to Eq. (4), we get

uðr; tÞ ¼ ft þ c2 L�1tt Lrruðr; tÞ þ L�1tt

1

r
Lruðr; tÞ

� �

where

ft ¼ uðr; 0Þ þ tutðr; 0Þ

¼ f ðrÞ þ ctgðrÞ (5)

The Adomian decomposition method [1,2] assumes an infinite series solutions for unknown function u(r, t)
given by

uðr; tÞ ¼
X1
n¼0

unðr; tÞ (6)

where the components u0, u1, u2, y are usually determined recursively by

u0 ¼ ft

u1 ¼ c2 L�1tt ðLrru0Þ þ L�1tt

1

r
Lru0

� �� �

u2 ¼ c2 L�1tt ðLrru1Þ þ L�1tt

1

r
Lru1

� �� �

ukþ1 ¼ c2 L�1tt ðLrrukÞ þ L�1tt

1

r
Lruk

� �� �
; kX0 (7)

Recently, Wazwaz [5] proposed that the construction of the zeroth component of the decomposition series can
be defined in a slightly different way. He has proposed that if the zeroth component u0 ¼ ft and the function
ft is possible to divide into two parts f1 and f2 such that

u0 ¼ f1
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u1 ¼ f2 þ c2 L�1tt ðLrru0Þ þ L�1tt

1

r
Lru0

� �� �

ukþ1 ¼ c2 L�1tt ðLrrukÞ þ L�1tt

1

r
Lruk

� �� �
; kX1 (8)

This type of modification is giving more flexibility to the Adomian decomposition method in order to solve
complicated non-linear differential equations. In many cases the modified decomposition method avoids the
unnecessary complications in calculating the Adomian polynomials.

The decomposition series (6) converges very rapidly in real physical problems. The rapid convergence means
that few terms are required. The practical solutions will be the n-th approximation an ¼

Pn�1
k¼0ukðr; tÞ; nX1,

with limn-Nan ¼ u(r, t).

3. Particular cases

Case I: Taking f(r) ¼ r and g(r) ¼ 1. Using the recurrence relation (8), we find

u0 ¼ r

u1 ¼ ctþ c2 L�1tt Lrrðu0Þ þ L�1tt

1

r
Lru0

� �� �
¼ ctþ

c2t2
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Fig. 1. (a) Plot of u(r, t) with respect to r and t at c ¼ 6 for Case I and (b) plot of u(r, t) vs. t for different values of c at r ¼ 20 for Case I.
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u2 ¼ c2L�1tt Lrrðu1Þ þ
1
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Lrðu1Þ

� �
¼
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24r3

u3 ¼ c2L�1tt Lrrðu2Þ þ
1
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� �
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and so on. Therefore,
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(9)

As evident, the above series will be convergent for the values of |t/r|51 i.e., for large membrane and small
range of time.

Case II: Taking f(r) ¼ r2 and g(r) ¼ r,

u0 ¼ r2

u1 ¼ ctrþ 2c2t2

u2 ¼
c3t3
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Fig. 2. (a) Plot of u(r, t) with respect to r and t at c ¼ 6 for Case II and (b) plot of u(r, t) vs. t for different values of c at r ¼ 20 for Case II.
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u3 ¼
c5t5

120r3

and so on.
Thus

uðr; tÞ ¼ r2 1þ c
t
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As of Case I, the above series is also convergent for |t/r|51.
Case III: Taking f ðrÞ ¼

ffiffi
r
p

and gðrÞ ¼ 1=
ffiffi
r
p

.
Here
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ffiffi
r
p
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ctffiffi
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Fig. 3. (a) Plot of u(r, t) with respect to r and t at c ¼ 6 for Case III and (b) plot of u(r, t) vs. t for different values of c at r ¼ 20 for

Case III.
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u3 ¼
5c5t5

384r9=2
þ

49c6t6

5120r11=2

and so on.
Finally,
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As of Case I, the above series is convergent for |t/r|51.
Case IV: Taking f(r) ¼ r2 and g(r) ¼ 1.
Here

u0 ¼ r2

u1 ¼ ctþ 2c2t2

un ¼ 0; nX2

Therefore,

uðr; tÞ ¼ r2 þ ctþ 2c2t2 (12)

Case V: Taking f(r) ¼ r2 and g(r) ¼ r2.
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Fig. 4. (a) Plot of u(r, t) with respect to r and t at c ¼ 2 for Case IV and (b) plot of u(r, t) vs. t for different values of c at r ¼ 10 for Case IV.
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Here

u0 ¼ r2

u1 ¼ ctr2 þ 2c2t2

u2 ¼
2
3
c3t3

un ¼ 0; nX3

Therefore,

uðr; tÞ ¼ r2 þ ctr2 þ 2c2t2 þ 2
3
c3t3 (13)

4. Numerical results and discussion

In this section, numerical results of the displacement for various values of radii of the membrane and time
are presented through Figs. 1–5. For Cases I–III, it is kept in mind that for the convergence of the problems
the ratio t/r is to be small. It is observed that for Cases I and III, the displacement decreases with the increase
in r and increases with the increase in t (Figs. 1(a) and 3(a)) but for the Case II, it increases with the increase of
both r and t (Fig. 2(a)) for a fixed value of wave velocity (c ¼ 6).
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Fig. 5. (a) Plot of u(r, t) with respect to r and t at c ¼ 2 for Case V and (b) plot of u(r, t) vs. t for different values of c at r ¼ 10 for Case V.
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It is also seen from Figs. 1(b), 2(b) and 3(b) that the displacement increases with the increase in t and c both
at a fixed value of the radius of the membrane (for r ¼ 20). The increase in displacement is faster in Case II
than for Cases I and III.

For the Cases IV and V, since the expressions of displacement contain only finite number of terms, so u(r, t)
does not depend on the ratio t/r. It is seen that in both the cases the displacement increases with the increase in
both r and t for a fixed value of c ¼ 2 (Figs. 4(a) and 5(a)). Figs. 4(b) and 5(b) depict that the displacement
increases with the increase in t and c for fixed value of r ¼ 10. The increase in displacement in Case V is faster
than that in Case IV. All the computations and figures are made using Mathematica software [12].

5. Conclusion

The modified decomposition technique is very powerful in finding solutions for various physical problems.
Showing its application for vibration of very large membrane, we may conclude that the decomposition
method will be very much useful for solving many engineering problems both analytically and numerically.

It is also shown that the advantage of the modified decomposition method is its fast convergence of the
solution. The numerical results obtained here conform to its high degree of accuracy. Moreover, no
linearization or perturbation or discretization is needed and it also avoids the accuracy of finding the inverses
of Laplace and Hankel transformations.
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